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1. Objectives 
 
Objective 1 : To construct a quantum algorithm to determine “Whether or not a function is 
evenly distributed”  in quantum polynomial time without initialization. 
 
A function  MN ZZf →:  is called evenly distributed if it is many-to-one and onto an evenly 

spaced range. In more detail, the domain of f , NZ  is mapped onto a subset of K  of MZ which is 
evenly spaced elements in the range MZ  with constant separation KM / , where  NMK ,≤ . 
 We construct quantum algorithms which can determine whether or not a function is evenly 
distributed efficiently without initialization of the auxiliary register which is usually needed in 
quantum computational algorithms. 
 
Objective 2 : “The functional evaluation oracle” can be constructed from the functional phase 
transform. 
 
On a quantum computer, a function MN ZZf →:  is evaluated by the function evaluation oracle 

that computes 〉⊕〉+→〉〉+ )(|||| xfyxyx , where the first quantum register is called the control 
register and the second register is called the auxiliary or ancillary register. 
It has been shown that the quantum functional phase transform can be constructed from the 
quantum functional evaluation oracle without initialization of auxiliary registers. However, the 
converse has not been proven yet. 
Objective 2 is to show the converse of the previous result. That is. The function evaluation oracle 

can be shown to be constructed from the functional phase transform that changes the phase of each 
qubit selectively. 

 
2. Status of Effort 
 
It was not so trivial to construct unitary operations by which the interference pattern on the phases 

for both evenly distributed functions and the others. So it was somewhat needed to restrict the 
domain of evenly-distribution functions to 2Z  (that is, Boolean functions) and to analyze the n -th 
root of unity produced by the quantum Fourier transform. Furthermore, we also simplified the 
problem of evenly-distribution function to be the problem of evenly balanced function on which we 
have constructed a quantum algorithm which can solve the problem in polynomial time. Based on 
this result we have constructed an initialization-free quantum algorithm that can determine “whether 
a function is evenly balanced or not” in quantum polynomial time. Then we have extended the 
range of the function in order to make it to be an evenly distributed one. 
 

3. Abstract 
 

We generalized quantum algorithm distinguishes a wider class of functions promised to be either 
constant or many to one and onto an evenly spaced range, so-called a evenly-distributed function. 
As the original DJ-algorithm, the generalized algorithm solves this problem using a single 
functional evaluation.  

In spite of the incredible computing power of quantum computer, it has been demanded to use a 
certain number of quantum registers in a specific state and the extra operations to initialize the state 
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of the registers. However, it would help a lot to reduce the storage and operations if one can use any 
arbitrary unknown quantum state that might be in the process of other quantum computer in order 
to operate one’s own. So we consider the problem of distinguishing constant and evenly balanced 
functions and present a quantum algorithm for this problem that does not require any initialization 
of an auxiliary register involved in the process of functional evaluation and after solving the 
problem recovers the initial state of an auxiliary register. Based on this approach, we have 
investigated and present some algorithmic technique, in which a single auxiliary register in an 
arbitrary unknown state is sufficient to implement the iterative procedure that is usually necessary 
in quantum computations and recover the auxiliary register untouched. The technique is applicable 
to the most case of quantum algorithms that give us an exponential speed-up and this is far beyond 
our original objectives. The new algorithmic technique can be applied to any case of hidden 
subgroup problems if the based group is commutative or not including period finding and Simon 
problems. Since most known applications of the QFT can be considered as a generalization of 
finding unknown period of a periodic function(for example, Shor's factoring algorithm[1] and 
Hallgren's more recent algorithm for solving Pell's equation)[2],  the initialization-free technique 
could be applied to a lot of implementations of quantum algorithms. 
 
3.1 Research Accomplishments 
 
The Initialization-free generalized Deutsch-Jozsa type quantum Algorithms 
 
We generalized the well-known Deutsch-Jozsa (DJ)[3] problem to the tasks of distinguishing 

between constant functions and so-called evenly distributed and evenly balanced functions, 
respectively. While any classical, deterministic black-box algorithm for the generalizations requires 
exponentially many function calls in the input length, the quantum algorithms we present here only 
need one or two such calls. The quantum circuit for the problem with evenly balanced function does 
not even require its auxiliary registers to be initialized. 
 
We first briefly recall the original DJ problem [3]. The input is a function 22: ZZf n →  computed 

by a black-box which is guaranteed to fulfill the following promise. 
‘Either f is a constant function, (i.e., 0)( =xf  for all x  or 1)( =xf  for all x ), or f  is balanced, 

(i.e., 1)( =xf  for exactly half of the inputs)’. Deutsch and Jozsa showed that this promise problem 
is solvable by a quantum circuit using only one invocation of a black-box for f , which carries out 
the unitary transformation 

〉⊕〉⊗⎯→⎯〉〉⊗ )(|||| xfyxyx fU , 
where nZx 2∈  and 2Zy∈ . 

 
The whole circuit realizes the sequence of transformations 
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Where H is the Hadamard transform on a single qubit, 〉n0|  denotes the all-zero vector of length n , 
and yx ⋅  is the inner product of the vectors x  and y  on nZ 2 . The circuit requires an n -qubit 
register containing the input for f and one auxiliary qubit for the function value. The measurement 
of the n -qubit register after carrying out the above transformation yields 〉n0| with certainty if the 
function  is constant and some other vector if it is balanced. 
 
The two generalizations of the DJ problem considered here are as follows. 

 
(1) Problem GDJ-ED (generalized Deutsch-Jozsa for evenly distributed functions).  
The input is a function MN ZZf →:  which is either constant or evenly distributed, 

i.e.)  There is an integer K dividing M and N and another integer t  such that  
(i)  The image of f  is equal to tjNM +)/(  1,,0 −= Kj K  
(ii)  The function is )/( KN -to-one 

  
(2) Problem GDJ-EB (generalized Deutsch-Jozsa problem for evenly balanced functions).  
The input is a function MN ZZf →:  which is either constant or evenly balanced,  

i.e.) For half of all output values y  of f , the parity of all bits in the representation of y  as a 
vector over mZ2 , ][log Mm = , is equal to 1. 
 
From now on, we assume for simplicity that nN 2=  and mM 2= . We may identify values from 

NZ  and MZ  with vectors from nZ2  and mZ2 . 
 
We first discuss the quantum algorithm which can solve the problem GDJ-ED efficiently.  

Note that the original DJ algorithm encodes the values of f  into a sum of powers of -1, which is a 
square root of unity in 2Z  and this sum finally appears in the amplitude of 〉n0| . Then due to the 
properties of the roots of unity, the sum cancels out if the function under consideration is balanced. 
The idea in the algorithm for GDJ-ED is to compute a sum of M -th roots of unity over MZ  instead 
of a square root of unity in 2Z . Instead of the standard black-box in the original DJ algorithm, a 
black-box computing the transformation 

〉⎯→⎯〉 ′ xx xfU f || )(ω  
is used, where Mie /2: πω = . This black-box operation is again sandwiched into two applications of 

the Hadamard transform on n -qubits, as in the original DJ-problem. The final state computed by 
the new algorithm is given by 

∑∑
∈

⋅

∈
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nn Zx

xfyx
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n y

22
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For a constant function f , the amplitude of 〉n0| in this sum is )0(fω , i.e., the result is observed with 
certainty in a measurement of the n -qubit register. Due to the properties of the roots of unity, the 
amplitude is equal to 0 if f is evenly distributed, and thus, a result different from 〉n0|  is observed. 
Altogether, the algorithm solves the problem GDJ-ED.  
Here, we present another algorithm which works with a black-box analogous to the standard one, 
realizing the transformation 
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〉+〉⊗⎯→⎯〉〉⊗ ′′ )(|||| xfyxyx fU  
 
where NZx∈ , MZy∈  and ‘+’ stands for the addition modulo M .  

This second algorithm requires an auxiliary register of ][log M -qubits which is initialized with the 
all-ones vector, 〉⊗ ][log1| M . It also needs to apply the black-box only once. 
 
Now, we consider the quantum algorithm which can solve the problem GDJ-EB using any 

arbitrary mixed quantum state as the auxiliary register and recovering it at the end of algorithm 
without any deformation. The algorithm uses an n -qubit register initialized by 〉n0|  and an m -
qubit auxiliary register which is assumed to be in an arbitrary pure state 〉Ψ| . On these registers, the 
algorithm carries out the sequence of transformations 
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The black-box operation ⊕

fU  on mn + qubits is defined as 
 

〉⊕〉⊗→〉〉⊗ )(|||| xfyxyx  
 
where nZx 2∈  and mZy 2∈  and ‘⊕ ’ denotes the bitwise exclusive-or, i.e., the addition in  mZ2 . 
Then it can be shown that the final state obtained by these transformations is 
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 where 22: ZZp m →  means the ‘parity function’,  i.e.,  )2(mod)),,(( 11 mm xxxxp ++= KK  for any 

m
m Zxx 21 ),,( ∈K . 

Similarly with the original DJ-problem, constant and evenly balanced functions can now be 
distinguished by a measurement of the first n -qubits. Furthermore, in terms of ‘purification’, the 
algorithm also works for arbitrary initial states (i.e., also mixed ones) in the auxiliary register. 
 

 The Initialization-free quantum Algorithms for finding hidden subgroup structure  

(Simon problem and finding unknown period) 
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We have constructed a quantum algorithm that can solve Simon’s problem[4] in polynomial times 
with allowing any arbitrary  impure or even the completely mixed state n

I
2  as the auxiliary 

register and  turn it back without any deformation . The cost of the algorithm is essentially one extra 
evaluation of  fU  within the circuit and the ability to choose random classical bit-strings on each 
run. Moreover, replacing the Hadamard transforms in the algorithm for Simon’s problem with 
Quantum Fourier Transforms (QFTs), it is also possible to similarly modify the usual quantum 
period-finding algorithm [1] to exploit fully mixed auxiliary registers. 

A brief description of the algorithms is following.  
First, we note that there exists an exact quantum polynomial-time algorithm for the Simon 

problem[5]. However, we here deal with the original Simon algorithm which is polynomial-time in 
the expected sense.  

For convenience, we use the following notations. Let { }⊕= ,2
nZG  be a group under the binary 

operation  ⊕  , which is the bitwise XOR operation. For a subset || A  of || G , let || A  denote the 
cardinality of A .  

We define a bilinear map 2ZGG →×  such that 

1100 −−⊕⋅⋅⋅⊕= nn yxyxxy   with  ),,( 10 −⋅⋅⋅= nxxx , ),,( 10 −⋅⋅⋅= nyyy  

 For a subgroup H of G , let  { }HhallforxhGxH ∈=∈=+ 0|  denote the 
orthogonal subgroup of H .  

We remark that the quotient group G/H is well-defined since G is an abelian group.  

Let GGf →:  be an arbitrary two-to-one map such that f(x) = f(y) if and only if Hyx ∈⊕  where 
H = {0, h} is a subgroup of G for some non-zero h in G . Then the Simon problem is to find the 
subgroup H , that is, to determine the value of h.  
The original Simon algorithm is as follows:  

(i) Prepare  nn oo ⊗⊗ ⊗  , (ii) Apply  IWn ⊗ , where  nW  is the n-qubit Walsh-Hadamard 

transform,  (iii) Apply fU ,  (iv) Apply IWn ⊗  . 

Then the resulting state is ∑∑
∈∈

⊗−=Φ
HGx

xy

Hy
xfy

G /'
)()1(2  . If we measure the first n-qubit 

state, then for each +∈Hy , the probability with which we obtain y as the outcome is 
||

2
G

.  

Thus, after expected O(n) repetitions of this procedure, at least n linearly independent values of y 
can be collected so that the nontrivial h' is uniquely determined by solving the linear system of 
equations h' y=0 and thus we have h'=h as required.  

Now the initialization-free quantum algorithm for the Simon problem is of the following forms.  
First, consider the following quantum algorithm:  
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(i) Prepare an n-qubit state in the state 0 as the control qubits and an n-qubit state in an arbitrary 

pure state ∑=
k

k kαψ  as the auxiliary qubits, (ii) Apply IWn ⊗ ,  (iii) Apply fU , (iv) Choose a 

random n-bit string ),,( 10 −⋅⋅⋅= nwww  and apply  10 −⊗⋅⋅⋅⊗= nw
z

w
zwS σσ  on the n-qubit auxiliary 

qubits. ( wSI ⊗ ), (v) Apply fU , (vi) Apply wSI ⊗  , (vii) Apply IWn ⊗ . 

Then the expect probability of obtaining a state +∈Hy  is exactly same with that of original 
Simon algorithm.  

In case when the quantum states we are dealing with are mixed state, it is also possible to 
construct a super operator (more general form of quantum operation) which performs the 
initialization-free Simon algorithm by means of the unitary operators used above.  

Similarly, we can present the initialization-free quantum algorithm for the period-finding 
problem. Let nn ZZf

22
: →  be a periodic function with unknown period T.  

Instead of Hadamard transformation in initialization-free Simon Algorithm, we use Quantum 
Fourier Transform F  on nZ

2
 and an m-qubit unitary operation  yeyU miwy

w −→ /2π  depending 

on  a  random m-bit string ),,( 10 −⋅⋅⋅= nwww  . That is, (i) Prepare an n-qubit state in the state 0  as 

the control qubits and an m-qubit state in an arbitrary pure state  ∑=
k

k kαψ  as the auxiliary 

qubits, (ii) Apply IFn ⊗ , (iii) Apply fU , (iv) Apply wUI ⊗ , (v)  Apply fU , (vi) Apply wUI ⊗ , 

(vii) Apply IFn ⊗ . 

Then again, it is quite routine to see that the expect probability of obtaining a state y  from 
which, we can get the information of the unknown period is exactly same with that of original 
period-finding algorithm. The super operator for the case of mixed state can be also constructed by 
the unitary operators used above. 
 
3.2 Significance to the Field 
 
(1) The limitation on the size of quantum computers makes it important to reuse qubits for auxiliary 
registers. However, by the algorithmic technique we present here, any arbitrarily mixed state can be 
used as the auxiliary qubits, and furthermore it can be fully recovered after completing the 
computations so that the independent processes of several quantum computers can share auxiliary 
registers. Furthermore, the removal of the preparation in a certain pure state as the initial state of the 
auxiliary register and full recovery of the original state can make it possible to reuse the recovered 
one by employing it in any other computations 
� A single preparation of the auxiliary qubits in an arbitrarily mixed state is sufficient to implement 
the iterative procedure that is usually necessary in quantum computation and that means an 
immense reduction of the storage and operations in quantum computing. 
 
(2) It is assumed that most quantum algorithms require some initialization at start-up, which is to 
prepare a certain pure state as an initial state. However, in experimentally realizable proposals for 
the implementation of quantum algorithms, it may be technically difficult to prepare and maintain 
the initial pure state. Especially, the nuclear magnetic resonance (NMR) system is typically applied 
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to physical systems in equilibrium at room temperature. This means that the initial state of the spins 
is nearly completely random, that is, it is difficult to prepare pure quantum states of nuclear spins in 
NMR systems. So our result, by which the initializing steps of a certain pure state can be removed 
and any initial state can be recovered, would help a lot to avoid such an effort in present-day 
experimental implementations of quantum computation.  
 
3.3 Relationship to the Original Goals 
 
The original goal was to construct quantum algorithms which can determine certain properties of 

given mathematical functions in a polynomial time without initializing the input quantum state. 
That is, quantum algorithms which determines  
 
1. Whether a Boolean function is balanced or not 
2. Whether a function is evenly balanced or not 
3. Whether a function is evenly distributed or not 
 
in a polynomial times without the initialization of the input state. 

 
As the result of this research, we have accomplished all the contents of our original goals and 

furthermore, we have constructed a systematic method to construct efficient quantum algorithms 
solving period-finding problem and Simon’s problem without any initialization of the auxiliary 
register. 
It can be also shown that our new method can be applied to various kinds of so called ‘hidden 

subgroup problems’ to which, many problems known to be hard classically have some reductions. 
Since most of known “exponentially fast” applications of the Quantum Fourier transform (QFT) 
can be considered as a generalization of finding unknown period of a periodic function, the 
existence of these quantum algorithms implies that any initialization of the auxiliary qubits may be 
unnecessary in many quantum algorithms. 
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6.2 Application Areas 
 
- Symmetric cryptography  
 
Since it is essential to search evenly distributed functions (which are also called regular function) 

in classical symmetric cryptography to design secure block ciphers, our algorithm can be used in 
this procedure. 
 
- Complexity class 
 
New quantum algorithms that are exponentially faster than any classical algorithms can be 

introduced and our work can enlarge some class of quantum computational complexity. 
 
- Present-day experimental implementations of quantum computation 
 
The experimentally realizable proposals for the implementation of quantum algorithms, it may be 
technically difficult to prepare the initial pure state which has been considered to be necessary. 
More specifically, in experimental preparation of quantum states by means of the nuclear magnetic 
resonance (NMR) system, it is known to be difficult to prepare pure quantum states of nuclear spins 
in NMR systems. Hence, it would be a lot helpful to use our method of quantum algorithms which 
can be efficiently performed even though the initial states or some parts of them are not in a specific 
pure state. Furthermore, since the parts of the initial state remain intact even after the computation,   
the parts could be reused in any other computations, which would save a large amount of the 
preparation cost in actual physical implementation of quantum algorithms. 
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